AbsEmbedder#
- class FlagEmbedding.abc.inference.AbsEmbedder(model_name_or_path: str, normalize_embeddings: bool = True, use_fp16: bool = True, query_instruction_for_retrieval: str | None = None, query_instruction_format: str = '{}{}', devices: str | int | List[str] | List[int] | None = None, batch_size: int = 256, query_max_length: int = 512, passage_max_length: int = 512, convert_to_numpy: bool = True, **kwargs: Any)[source]#
Base class for embedder. Extend this class and implement
encode_queries(),encode_corpus(),encode()for custom embedders.- Parameters:
model_name_or_path (str) – If it’s a path to a local model, it loads the model from the path. Otherwise tries to download and load a model from HuggingFace Hub with the name.
normalize_embeddings (bool, optional) – If True, normalize the embedding vector. Defaults to
True.use_fp16 (bool, optional) – If true, use half-precision floating-point to speed up computation with a slight performance degradation. Defaults to
True.query_instruction_for_retrieval – (Optional[str], optional): Query instruction for retrieval tasks, which will be used with with
query_instruction_format. Defaults toNone.query_instruction_format – (str, optional): The template for
query_instruction_for_retrieval. Defaults to"{}{}".devices (Optional[Union[str, int, List[str], List[int]]], optional) – Devices to use for model inference. Defaults to
None.batch_size (int, optional) – Batch size for inference. Defaults to
256.query_max_length (int, optional) – Maximum length for query. Defaults to
512.passage_max_length (int, optional) – Maximum length for passage. Defaults to
512.convert_to_numpy (bool, optional) – If True, the output embedding will be a Numpy array. Otherwise, it will be a Torch Tensor. Defaults to
True.kwargs (Dict[Any], optional) – Additional parameters for HuggingFace Transformers config or children classes.
Methods#
- static AbsEmbedder.get_target_devices(devices: str | int | List[str] | List[int]) List[str][source]#
- Parameters:
devices (Union[str, int, List[str], List[int]]) – specified devices, can be str, int, list of str, or list of int.
- Raises:
ValueError – Devices should be a string or an integer or a list of strings or a list of integers.
- Returns:
A list of target devices in format.
- Return type:
List[str]
- static AbsEmbedder.get_detailed_instruct(instruction_format: str, instruction: str, sentence: str)[source]#
Combine the instruction and sentence along with the instruction format.
- Parameters:
instruction_format (str) – Format for instruction.
instruction (str) – The text of instruction.
sentence (str) – The sentence to concatenate with.
- Returns:
The complete sentence with instruction
- Return type:
str
- AbsEmbedder.encode_queries(queries: List[str] | str, batch_size: int | None = None, max_length: int | None = None, convert_to_numpy: bool | None = None, **kwargs: Any)[source]#
encode the queries using the instruction if provided.
- Parameters:
queries (Union[List[str], str]) – Input queries to encode.
batch_size (Optional[int], optional) – Number of sentences for each iter. Defaults to
None.max_length (Optional[int], optional) – Maximum length of tokens. Defaults to
None.convert_to_numpy (Optional[bool], optional) – If True, the output embedding will be a Numpy array. Otherwise, it will be a Torch Tensor. Defaults to
None.
- Returns:
Return the embedding vectors in a numpy array or tensor.
- Return type:
Union[torch.Tensor, np.ndarray]
- AbsEmbedder.encode_corpus(corpus: List[str] | str, batch_size: int | None = None, max_length: int | None = None, convert_to_numpy: bool | None = None, **kwargs: Any)[source]#
encode the corpus using the instruction if provided.
- Parameters:
corpus (Union[List[str], str]) – Input corpus to encode.
batch_size (Optional[int], optional) – Number of sentences for each iter. Defaults to
None.max_length (Optional[int], optional) – Maximum length of tokens. Defaults to
None.convert_to_numpy (Optional[bool], optional) – If True, the output embedding will be a Numpy array. Otherwise, it will be a Torch Tensor. Defaults to
None.
- Returns:
Return the embedding vectors in a numpy array or tensor.
- Return type:
Union[torch.Tensor, np.ndarray]
- AbsEmbedder.encode(sentences: List[str] | str, batch_size: int | None = None, max_length: int | None = None, convert_to_numpy: bool | None = None, instruction: str | None = None, instruction_format: str | None = None, **kwargs: Any)[source]#
encode the input sentences with the embedding model.
- Parameters:
sentences (Union[List[str], str]) – Input sentences to encode.
batch_size (Optional[int], optional) – Number of sentences for each iter. Defaults to
None.max_length (Optional[int], optional) – Maximum length of tokens. Defaults to
None.convert_to_numpy (Optional[bool], optional) – If True, the output embedding will be a Numpy array. Otherwise, it will be a Torch Tensor. Defaults to
None.instruction (Optional[str], optional) – The text of instruction. Defaults to
None.instruction_format (Optional[str], optional) – Format for instruction. Defaults to
None.
- Returns:
return the embedding vectors in a numpy array or tensor.
- Return type:
Union[torch.Tensor, np.ndarray]
- abstractmethod AbsEmbedder.encode_single_device(sentences: List[str] | str, batch_size: int = 256, max_length: int = 512, convert_to_numpy: bool = True, device: str | None = None, **kwargs: Any)[source]#
This method should encode sentences and return embeddings on a single device.
- AbsEmbedder.start_multi_process_pool(process_target_func: Any) Dict[Literal['input', 'output', 'processes'], Any][source]#
Starts a multi-process pool to process the encoding with several independent processes via
SentenceTransformer.encode_multi_process.This method is recommended if you want to encode on multiple GPUs or CPUs. It is advised to start only one process per GPU. This method works together with encode_multi_process and stop_multi_process_pool.
- Returns:
A dictionary with the target processes, an input queue, and an output queue.
- Return type:
Dict[str, Any]
- static AbsEmbedder._encode_multi_process_worker(target_device: str, model: AbsEmbedder, input_queue: Queue, results_queue: Queue) None[source]#
Internal working process to encode sentences in multi-process setup
- static AbsEmbedder.stop_multi_process_pool(pool: Dict[Literal['input', 'output', 'processes'], Any]) None[source]#
Stops all processes started with start_multi_process_pool.
- Parameters:
pool (Dict[str, object]) – A dictionary containing the input queue, output queue, and process list.
- Returns:
None
- AbsEmbedder.encode_multi_process(sentences: List[str], pool: Dict[Literal['input', 'output', 'processes'], Any], **kwargs)[source]#
- AbsEmbedder._concatenate_results_from_multi_process(results_list: List[Tensor | ndarray | Any])[source]#
concatenate and return the results from all the processes
- Parameters:
results_list (List[Union[torch.Tensor, np.ndarray, Any]]) – A list of results from all the processes.
- Raises:
NotImplementedError – Unsupported type for results_list
- Returns:
return the embedding vectors in a numpy array or tensor.
- Return type:
Union[torch.Tensor, np.ndarray]