Source code for FlagEmbedding.abc.finetune.reranker.AbsArguments

import os
from typing import Optional
from dataclasses import dataclass, field

from transformers import TrainingArguments


[docs] @dataclass class AbsRerankerModelArguments: """ Abstract class for reranker model arguments. """ model_name_or_path: str = field( metadata={"help": "The model checkpoint for initialization."} ) config_name: str = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name."} ) tokenizer_name: str = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name."} ) cache_dir: str = field( default=None, metadata={"help": "Where do you want to store the pre-trained models downloaded from s3."} ) trust_remote_code: bool = field( default=False, metadata={"help": "Trust remote code"} ) model_type: str = field( default='encoder', metadata={"help": "Type of finetune, ['encoder', 'decoder']"} ) token: str = field( default_factory=lambda: os.getenv('HF_TOKEN', None), metadata={"help": "The token to use when accessing the model."} )
# finetune_type: str = field( # default='sratch', # metadata={"help": "Type of finetune, ['sratch', 'finetune']"} # )
[docs] @dataclass class AbsRerankerDataArguments: """ Abstract class for reranker data arguments. """ train_data: str = field( default=None, metadata={ "help": "One or more paths to training data. `query: str`, `pos: List[str]`, `neg: List[str]` are required in the training data.", "nargs": "+" } ) cache_path: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the cached data"} ) train_group_size: int = field(default=8) query_max_len: int = field( default=32, metadata={ "help": "The maximum total input sequence length after tokenization for passage. Sequences longer than this will be truncated." }, ) passage_max_len: int = field( default=128, metadata={ "help": "The maximum total input sequence length after tokenization for passage. Sequences longer than this will be truncated." }, ) max_len: int = field( default=512, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated." }, ) pad_to_multiple_of: Optional[int] = field( default=None, metadata={ "help": "If set will pad the sequence to be a multiple of the provided value." }, ) max_example_num_per_dataset: int = field( default=100000000, metadata={"help": "the max number of examples for each dataset"} ) query_instruction_for_rerank: str= field( default=None, metadata={"help": "instruction for query"} ) query_instruction_format: str = field( default="{}{}", metadata={"help": "format for query instruction"} ) knowledge_distillation: bool = field( default=False, metadata={"help": "Use knowledge distillation when `pos_scores: List[float]` and `neg_scores: List[float]` are in features of training data"} ) passage_instruction_for_rerank: Optional[str] = field( default=None, metadata={"help": "instruction for passage"} ) passage_instruction_format: Optional[str] = field( default="{}{}", metadata={"help": "format for passage instruction"} ) shuffle_ratio: float = field( default=0.0, metadata={"help": "The ratio of shuffling the text"} ) sep_token: str = field( default='\n', metadata={"help": "The sep token for LLM reranker to discriminate between query and passage"} )
# def __post_init__(self): # for train_dir in self.train_data: # if not os.path.exists(train_dir): # raise FileNotFoundError(f"cannot find file: {train_dir}, please set a true path") @dataclass class AbsRerankerTrainingArguments(TrainingArguments): sub_batch_size: Optional[int] = field(default=None, metadata={"help": "sub batch size for training, not implemented yet"})