Source code for FlagEmbedding.finetune.embedder.decoder_only.base.trainer
import os
import torch
import logging
from typing import Optional
from FlagEmbedding.abc.finetune.embedder import AbsEmbedderTrainer
logger = logging.getLogger(__name__)
[docs]
class DecoderOnlyEmbedderTrainer(AbsEmbedderTrainer):
"""
Trainer class for base encoder models.
"""
def _save(self, output_dir: Optional[str] = None, state_dict=None):
"""Save the model to directory.
Args:
output_dir (Optional[str], optional): Output directory to save the model. Defaults to ``None``.
Raises:
NotImplementedError
"""
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info("Saving model checkpoint to %s", output_dir)
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
if not hasattr(self.model, 'save'):
raise NotImplementedError(
f'MODEL {self.model.__class__.__name__} '
f'does not support save interface')
else:
self.model.save(output_dir)
if self.tokenizer is not None and self.is_world_process_zero():
self.tokenizer.save_pretrained(output_dir)
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
# save the checkpoint for sentence-transformers library
# if self.is_world_process_zero():
# save_ckpt_for_sentence_transformers(output_dir,
# pooling_mode=self.args.sentence_pooling_method,
# normlized=self.args.normlized)