Source code for FlagEmbedding.finetune.embedder.decoder_only.icl.modeling

import logging

import torch
from transformers import AutoModel, AutoTokenizer

from FlagEmbedding.abc.finetune.embedder import AbsEmbedderModel

logger = logging.getLogger(__name__)


[docs] class BiDecoderOnlyEmbedderICLModel(AbsEmbedderModel): """Embedder model class for decoder only model. Args: base_model (AutoModel): The base model to train on. tokenizer (AutoTokenizer, optional): The tokenizer to use. Defaults to ``None``. negatives_cross_device (bool, optional): If True, will compute cross devices negative loss. Defaults to ``False``. temperature (float, optional): Temperature to control the scale of scores. Defaults to ``1.0``. sub_batch_size (int, optional): Sub-batch size during encoding. If negative, will not split to sub-batch. Defaults to ``-1``. kd_loss_type (str, optional): Type of knowledge distillation loss. Defaults to ``'kl_div'``. sentence_pooling_method (str, optional): Pooling method to get sentence embedding. Defaults to ``'last_token'``. normalize_embeddings (bool, optional): If True, normalize the embedding vector. Defaults to ``False``. """ TRANSFORMER_CLS = AutoModel def __init__( self, base_model: AutoModel, tokenizer: AutoTokenizer = None, negatives_cross_device: bool = False, temperature: float = 1.0, sub_batch_size: int = -1, kd_loss_type: str = 'kl_div', sentence_pooling_method: str = 'last_token', normalize_embeddings: bool = False, ): super().__init__( base_model, tokenizer=tokenizer, negatives_cross_device=negatives_cross_device, temperature=temperature, sub_batch_size=sub_batch_size, kd_loss_type=kd_loss_type, ) self.sentence_pooling_method = sentence_pooling_method self.normalize_embeddings = normalize_embeddings self.cross_entropy = torch.nn.CrossEntropyLoss(reduction='mean')
[docs] def encode(self, features): """ Encode and get the embedding. Args: features (Union[list, dict]): Features feed to the model. Returns: torch.Tensor: The embedding vectors. """ if features is None: return None if not isinstance(features, list): if self.sub_batch_size is not None and self.sub_batch_size > 0: all_p_reps = [] for i in range(0, len(features['attention_mask']), self.sub_batch_size): end_inx = min(i + self.sub_batch_size, len(features['attention_mask'])) sub_features = {} for k, v in features.items(): sub_features[k] = v[i:end_inx] last_hidden_state = self.model(**sub_features, return_dict=True).last_hidden_state p_reps = self._sentence_embedding(last_hidden_state, sub_features['attention_mask']) all_p_reps.append(p_reps) all_p_reps = torch.cat(all_p_reps, 0).contiguous() if self.normalize_embeddings: all_p_reps = torch.nn.functional.normalize(all_p_reps, dim=-1) return all_p_reps.contiguous() else: last_hidden_state = self.model(**features, return_dict=True).last_hidden_state all_p_reps = self._sentence_embedding(last_hidden_state, features['attention_mask']) if self.normalize_embeddings: all_p_reps = torch.nn.functional.normalize(all_p_reps, dim=-1) return all_p_reps.contiguous() else: all_p_reps = [] for sub_features in features: last_hidden_state = self.model(**sub_features, return_dict=True).last_hidden_state p_reps = self._sentence_embedding(last_hidden_state, sub_features['attention_mask']) all_p_reps.append(p_reps) all_p_reps = torch.cat(all_p_reps, 0).contiguous() if self.normalize_embeddings: all_p_reps = torch.nn.functional.normalize(all_p_reps, dim=-1) return all_p_reps.contiguous()
[docs] def _sentence_embedding(self, last_hidden_state, attention_mask): """Use the pooling method to get the sentence embedding. Args: last_hidden_state (torch.Tensor): The model output's last hidden state. attention_mask (torch.Tensor): Mask out padding tokens during pooling. Raises: NotImplementedError: Specified pooling method not implemented. Returns: torch.Tensor: The sentence embeddings. """ if self.sentence_pooling_method == "cls": return last_hidden_state[:, 0] elif self.sentence_pooling_method == "mean": s = torch.sum( last_hidden_state * attention_mask.unsqueeze(-1).float(), dim=1 ) d = attention_mask.sum(dim=1, keepdim=True).float() return s / d elif self.sentence_pooling_method == "last_token": left_padding = attention_mask[:, -1].sum() == attention_mask.shape[0] if left_padding: return last_hidden_state[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_state.shape[0] return last_hidden_state[ torch.arange(batch_size, device=last_hidden_state.device), sequence_lengths, ] else: raise NotImplementedError(f"pooling method {self.sentence_pooling_method} not implemented")
[docs] def compute_score(self, q_reps, p_reps): """Computes the scores between query and passage representations. Args: q_reps (torch.Tensor): Query representations. p_reps (torch.Tensor): Passage representations. Returns: torch.Tensor: The computed scores, adjusted by temperature. """ scores = self._compute_similarity(q_reps, p_reps) / self.temperature scores = scores.view(q_reps.size(0), -1) return scores
[docs] def _compute_similarity(self, q_reps, p_reps): """Computes the similarity between query and passage representations using inner product. Args: q_reps (torch.Tensor): Query representations. p_reps (torch.Tensor): Passage representations. Returns: torch.Tensor: The computed similarity matrix. """ if len(p_reps.size()) == 2: return torch.matmul(q_reps, p_reps.transpose(0, 1)) return torch.matmul(q_reps, p_reps.transpose(-2, -1))
[docs] def compute_loss(self, scores, target): """Compute the loss using cross entropy. Args: scores (torch.Tensor): Computed score. target (torch.Tensor): The target value. Returns: torch.Tensor: The computed cross entropy loss. """ return self.cross_entropy(scores, target)
[docs] def gradient_checkpointing_enable(self, **kwargs): """ Activates gradient checkpointing for the current model. """ self.model.gradient_checkpointing_enable(**kwargs)
[docs] def enable_input_require_grads(self, **kwargs): """ Enables the gradients for the input embeddings. """ self.model.enable_input_require_grads(**kwargs)
[docs] def save(self, output_dir: str): """Save the model to the directory. Args: output_dir (str): Directory for saving the model. """ state_dict = self.model.state_dict() state_dict = type(state_dict)( {k: v.clone().cpu() for k, v in state_dict.items()}) self.model.save_pretrained(output_dir, state_dict=state_dict)