Source code for FlagEmbedding.finetune.embedder.encoder_only.base.runner

import logging
from typing import Tuple
from transformers import (
    AutoModel, AutoConfig,
    AutoTokenizer, PreTrainedTokenizer
)

from FlagEmbedding.abc.finetune.embedder import AbsEmbedderRunner, AbsEmbedderModel, EmbedderTrainerCallbackForDataRefresh
from .modeling import BiEncoderOnlyEmbedderModel
from .trainer import EncoderOnlyEmbedderTrainer

logger = logging.getLogger(__name__)


[docs] class EncoderOnlyEmbedderRunner(AbsEmbedderRunner): """ Finetune Runner for base embedding models. """
[docs] def load_tokenizer_and_model(self) -> Tuple[PreTrainedTokenizer, AbsEmbedderModel]: """Load tokenizer and model. Returns: Tuple[PreTrainedTokenizer, AbsEmbedderModel]: Tokenizer and model instances. """ tokenizer = AutoTokenizer.from_pretrained( self.model_args.model_name_or_path, cache_dir=self.model_args.cache_dir, token=self.model_args.token, trust_remote_code=self.model_args.trust_remote_code ) base_model = AutoModel.from_pretrained( self.model_args.model_name_or_path, cache_dir=self.model_args.cache_dir, token=self.model_args.token, trust_remote_code=self.model_args.trust_remote_code ) num_labels = 1 config = AutoConfig.from_pretrained( self.model_args.config_name if self.model_args.config_name else self.model_args.model_name_or_path, num_labels=num_labels, cache_dir=self.model_args.cache_dir, token=self.model_args.token, trust_remote_code=self.model_args.trust_remote_code, ) logger.info('Config: %s', config) model = BiEncoderOnlyEmbedderModel( base_model, tokenizer=tokenizer, negatives_cross_device=self.training_args.negatives_cross_device, temperature=self.training_args.temperature, sub_batch_size=self.training_args.sub_batch_size, kd_loss_type=self.training_args.kd_loss_type, sentence_pooling_method=self.training_args.sentence_pooling_method, normalize_embeddings=self.training_args.normalize_embeddings ) if self.training_args.gradient_checkpointing: model.enable_input_require_grads() if self.training_args.fix_position_embedding: for k, v in model.named_parameters(): if "position_embeddings" in k: logging.info(f"Freeze the parameters for {k}") v.requires_grad = False return tokenizer, model
[docs] def load_trainer(self) -> EncoderOnlyEmbedderTrainer: """Load the trainer. Returns: EncoderOnlyEmbedderTrainer: Loaded trainer instance. """ trainer = EncoderOnlyEmbedderTrainer( model=self.model, args=self.training_args, train_dataset=self.train_dataset, data_collator=self.data_collator, tokenizer=self.tokenizer ) if self.data_args.same_dataset_within_batch: trainer.add_callback(EmbedderTrainerCallbackForDataRefresh(self.train_dataset)) return trainer