Source code for FlagEmbedding.finetune.reranker.decoder_only.layerwise.trainer

import os
import torch
import logging
from typing import Optional
# from transformers.deepspeed import is_deepspeed_zero3_enabled
from peft import get_peft_model_state_dict

from FlagEmbedding.abc.finetune.reranker import AbsRerankerTrainer

logger = logging.getLogger(__name__)


[docs] class DecoderOnlyRerankerTrainer(AbsRerankerTrainer): """ Trainer class for encoder only base reranker models. """ def _save(self, output_dir: Optional[str] = None, state_dict=None): """Save the model to directory. Args: output_dir (Optional[str], optional): Output directory to save the model. Defaults to ``None``. Raises: NotImplementedError """ output_dir = output_dir if output_dir is not None else self.args.output_dir os.makedirs(output_dir, exist_ok=True) logger.info("Saving model checkpoint to %s", output_dir) # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` if not hasattr(self.model, 'save'): raise NotImplementedError( f'MODEL {self.model.__class__.__name__} ' f'does not support save interface') else: self.model.save(output_dir) if self.tokenizer is not None and self.is_world_process_zero(): self.tokenizer.save_pretrained(output_dir) torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
# if is_deepspeed_zero3_enabled(): # if state_dict is None: # state_dict = self.model.state_dict() # prefix = 'model.' # assert all(k.startswith(prefix) for k in state_dict.keys()), list(state_dict.keys()) # state_dict = {k[len(prefix):]: v for k, v in state_dict.items()} # lora_state_dict = get_peft_model_state_dict(self.model.model, state_dict) # if self.args.process_index <= 0: # torch.save(lora_state_dict, os.path.join(output_dir, "adapter_model.bin")) # print(f"Save adapter model at {output_dir}")