Source code for FlagEmbedding.inference.reranker.decoder_only.lightweight

import torch
import warnings
import numpy as np
from tqdm import trange
from typing import Any, List, Union, Tuple, Optional
from peft import PeftModel
from torch import Tensor
from transformers import AutoModelForCausalLM, AutoTokenizer

from FlagEmbedding.abc.inference import AbsReranker
from FlagEmbedding.inference.reranker.encoder_only.base import sigmoid

from .models.gemma_model import CostWiseGemmaForCausalLM


def last_logit_pool_lightweight(logits: Tensor,
                    attention_mask: Tensor) -> Tensor:
    """Pool the last logit.

    Args:
        logits (torch.Tensor): The output logits of the model.
        attention_mask (torch.Tensor): Attention mask.

    Returns:
        torch.Tensor: The tensor after pooling.
    """
    left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
    if left_padding:
        return logits[:, -1]
    else:
        sequence_lengths = attention_mask.sum(dim=1) - 1
        batch_size = logits.shape[0]
        return torch.stack([logits[i, sequence_lengths[i]] for i in range(batch_size)], dim=0)


class Collater_for_lightweight:
    """
    Collator of the lightweight LLM reranker.
    
    Args:
        tokenizer (transformers.AutoTokenizer): The tokenizer for reranker.
        max_len (int): Maximum length of tokens.
    """
    def __init__(self, tokenizer, max_len):
        self.tokenizer = tokenizer
        self.max_len = max_len
        self.pad_to_multiple_of = 8
        self.label_pad_token_id = -100
        warnings.filterwarnings("ignore",
                                message="`max_length` is ignored when `padding`=`True` and there is no truncation strategy.")

    def __call__(self, data):
        features = data[0]
        query_lengths = data[1]
        prompt_lengths = data[2]

        labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None
        # We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the
        # same length to return tensors.
        if labels is not None:
            max_label_length = max(len(l) for l in labels)
            if self.pad_to_multiple_of is not None:
                max_label_length = (
                        (max_label_length + self.pad_to_multiple_of - 1)
                        // self.pad_to_multiple_of
                        * self.pad_to_multiple_of
                )

            padding_side = self.tokenizer.padding_side
            for feature in features:
                remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"]))
                if isinstance(feature["labels"], list):
                    feature["labels"] = (
                        feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"]
                    )
                elif padding_side == "right":
                    feature["labels"] = np.concatenate([feature["labels"], remainder]).astype(np.int64)
                else:
                    feature["labels"] = np.concatenate([remainder, feature["labels"]]).astype(np.int64)

        collected = self.tokenizer.pad(
            features,
            padding=True,
            pad_to_multiple_of=8,
            return_tensors='pt',
        )

        return collected, query_lengths, prompt_lengths


[docs] class LightweightLLMReranker(AbsReranker): """Base reranker class for light weight LLM like decoder only models. Args: model_name_or_path (str): If it's a path to a local model, it loads the model from the path. Otherwise tries to download and load a model from HuggingFace Hub with the name. peft_path (Optional[str], optional): Path to the PEFT config. Defaults to :data:`None`. use_fp16 (bool, optional): If true, use half-precision floating-point to speed up computation with a slight performance degradation. Defaults to :data:`False`. Defaults to :data:`False`. use_bf16 (bool, optional): Another type of half-precision floating-point, you can use bf16 if the hardware supports. Defaults to :data:False. query_instruction_for_rerank (str, optional): Query instruction for retrieval tasks, which will be used with with :attr:`query_instruction_format`. Defaults to :data:`"A: "`. query_instruction_format (str, optional): The template for :attr:`query_instruction_for_rerank`. Defaults to :data:`"{}{}"`. passage_instruction_for_rerank (str, optional): Passage instruction for retrieval tasks, which will be used with with :attr:`passage_instruction_format`. Defaults to :data:`"B: "`. passage_instruction_format (str, optional): The template for passage. Defaults to "{}{}". cache_dir (Optional[str], optional): Cache directory for the model. Defaults to :data:`None`. trust_remote_code (bool, optional): trust_remote_code. Defaults to :data:`False`. devices (Union[str, List[str], List[int]], optional): Devices to use for model inference, such as ["cuda:0"] or ["0"]. Defaults to :data:`None`. cutoff_layers (Optional[List[int]]): Pick which layers are used for computing the score. Defaults to :data:`None`. compress_layers (List[int], optional): Choose the layers to compress. Defaults to :data:`[8]`. compress_ratio (int, optional): Ratio to compress the selected layers, supported ratios: :data:`[1, 2, 4, 8]`. Defaults to :data:`1`. prompt (Optional[str], optional): Prompt for the specific task. Defaults to :data:`None`. batch_size (int, optional): Batch size for inference. Defaults to :data:`128`. query_max_length (int, optional): Maximum length for queries. If not specified, will be 3/4 of :attr:`max_length`. Defaults to :data:`None`. max_length (int, optional): Maximum length of passages. Defaults to :data`512`. normalize (bool, optional): If True, use Sigmoid to normalize the results. Defaults to :data:`False`. """ def __init__( self, model_name_or_path: str, peft_path: Optional[str] = None, use_fp16: bool = False, use_bf16: bool = False, query_instruction_for_rerank: str = "A: ", query_instruction_format: str = "{}{}", # specify the format of query_instruction_for_rerank passage_instruction_for_rerank: str = "B: ", passage_instruction_format: str = "{}{}", # specify the format of passage_instruction_for_rerank cache_dir: Optional[str] = None, trust_remote_code: bool = False, devices: Union[str, List[str], List[int]] = None, # specify devices, such as ["cuda:0"] or ["0"] # inference cutoff_layers: Optional[List[int]] = None, compress_layers: List[int] = [8], compress_ratio: int = 1, prompt: Optional[str] = None, batch_size: int = 128, query_max_length: Optional[int] = None, max_length: int = 512, normalize: bool = False, **kwargs: Any, ) -> None: super().__init__( model_name_or_path=model_name_or_path, use_fp16=use_fp16, query_instruction_for_rerank=query_instruction_for_rerank, query_instruction_format=query_instruction_format, passage_instruction_for_rerank=passage_instruction_for_rerank, passage_instruction_format=passage_instruction_format, devices=devices, batch_size=batch_size, query_max_length=query_max_length, max_length=max_length, normalize=normalize, **kwargs ) self.cutoff_layers = cutoff_layers self.compress_layers = compress_layers self.compress_ratio = compress_ratio self.prompt = prompt self.tokenizer = AutoTokenizer.from_pretrained( model_name_or_path, cache_dir=cache_dir, trust_remote_code=trust_remote_code ) self.tokenizer.padding_side = 'right' if use_bf16 is False and use_fp16 is False: warnings.warn("Due to model constraints, `use_bf16` and `use_fp16` cannot both be `False`. Here, `use_fp16` is set to `True` by default.", UserWarning) use_fp16 = True try: self.model = CostWiseGemmaForCausalLM.from_pretrained( model_name_or_path, cache_dir=cache_dir, trust_remote_code=trust_remote_code, torch_dtype=torch.bfloat16 if use_bf16 else torch.float32 ) except: self.model = AutoModelForCausalLM.from_pretrained( model_name_or_path, cache_dir=cache_dir, trust_remote_code=trust_remote_code, torch_dtype=torch.bfloat16 if use_bf16 else torch.float32 ) if peft_path: self.model = PeftModel.from_pretrained(self.model,peft_path) self.model = self.model.merge_and_unload() @torch.no_grad() def compute_score_single_gpu( self, sentence_pairs: Union[List[Tuple[str, str]], Tuple[str, str]], batch_size: Optional[int] = None, query_max_length: Optional[int] = None, max_length: Optional[int] = None, cutoff_layers: Optional[List[int]] = None, compress_layer: Optional[List[int]] = None, compress_layers: Optional[List[int]] = None, compress_ratio: Optional[int] = None, prompt: Optional[str] = None, normalize: Optional[bool] = None, device: Optional[str] = None, **kwargs: Any ) -> List[float]: """Compute the relevance scores using a single GPU. Args: sentence_pairs (Union[List[Tuple[str, str]], Tuple[str, str]]): Input sentence pairs to compute scores. batch_size (Optional[int], optional): Number of inputs for each iter. Defaults to :data:`None`. query_max_length (Optional[int], optional): Maximum length of tokens of queries. Defaults to :data:`None`. max_length (Optional[int], optional): Maximum length of tokens. Defaults to :data:`None`. cutoff_layers (Optional[List[int]], optional): Pick which layers are used for computing the score. Defaults to :data:`None`. compress_layer (Optional[List[int]]): Deprecated, use :attr:`compress_layers` instead. Defaults to :data:`None`. compress_layers (Optional[List[int]]): Selected layers to compress. Defaults to :data:`None`. compress_ratio (Optional[int]): Ratio to compress the selected layers, supported ratios: :data:`[1, 2, 4, 8]`. Defaults to :data:`None`. prompt (Optional[str], optional): Prompt for the specific task. Defaults to :data:`None`. normalize (Optional[bool], optional): If True, use Sigmoid to normalize the results. Defaults to :data:`None`. device (Optional[str], optional): Device to use for computation. Defaults to :data:`None`. Returns: List[float]: The computed scores. """ if cutoff_layers is None: cutoff_layers = self.cutoff_layers if compress_layers is None: compress_layers = self.compress_layers if compress_layer is not None: print('Try not to use the parameter `compress_layer`; use `compress_layers` instead.') compress_layers = compress_layer if compress_ratio is None: compress_ratio = self.compress_ratio if prompt is None: prompt = self.prompt if batch_size is None: batch_size = self.batch_size if max_length is None: max_length = self.max_length if query_max_length is None: if self.query_max_length is not None: query_max_length = self.query_max_length else: query_max_length = max_length * 3 // 4 if normalize is None: normalize = self.normalize if device is None: device = self.target_devices[0] if device == "cpu": self.use_fp16 = False if self.use_fp16: self.model.half() self.model.to(device) self.model.eval() assert isinstance(sentence_pairs, list) if isinstance(sentence_pairs[0], str): sentence_pairs = [sentence_pairs] # tokenize without padding to get the correct length all_queries_inputs = [] all_passages_inputs = [] for start_index in trange(0, len(sentence_pairs), batch_size, desc="pre tokenize", disable=len(sentence_pairs) < 128): sentences_batch = sentence_pairs[start_index:start_index + batch_size] queries = [s[0] for s in sentences_batch] passages = [s[1] for s in sentences_batch] queries_inputs_batch = self.tokenizer( queries, return_tensors=None, add_special_tokens=False, max_length=query_max_length, truncation=True, **kwargs ) passages_inputs_batch = self.tokenizer( passages, return_tensors=None, add_special_tokens=False, max_length=max_length, truncation=True, **kwargs ) queries_inputs_batch = [{ k: queries_inputs_batch[k][i] for k in queries_inputs_batch.keys() } for i in range(len(sentences_batch))] passages_inputs_batch = [{ k: passages_inputs_batch[k][i] for k in passages_inputs_batch.keys() } for i in range(len(sentences_batch))] all_queries_inputs.extend(queries_inputs_batch) all_passages_inputs.extend(passages_inputs_batch) # sort by length for less padding length_sorted_idx = np.argsort([-len(x['input_ids']) - len(y['input_ids']) for (x, y) in zip(all_queries_inputs, all_passages_inputs)]) all_queries_inputs_sorted = [all_queries_inputs[i] for i in length_sorted_idx] all_passages_inputs_sorted = [all_passages_inputs[i] for i in length_sorted_idx] # other inputs if prompt is None: prompt = "Predict whether passage B contains an answer to query A." prompt_inputs = self.tokenizer( prompt, return_tensors=None, add_special_tokens=False )['input_ids'] sep = "\n" sep_inputs = self.tokenizer( sep, return_tensors=None, add_special_tokens=False )['input_ids'] encode_max_length = max_length + len(sep_inputs) + len(prompt_inputs) # adjust batch size flag = False while flag is False: try: batch_inputs = [] query_lengths = [] prompt_lengths = [] for query_inputs, passage_inputs in zip( all_queries_inputs_sorted[:min(len(all_queries_inputs_sorted), batch_size)], all_passages_inputs_sorted[:min(len(all_passages_inputs_sorted), batch_size)] ): item = self.tokenizer.prepare_for_model( [self.tokenizer.bos_token_id] + query_inputs['input_ids'], sep_inputs + passage_inputs['input_ids'], truncation='only_second', max_length=encode_max_length, padding=False, return_attention_mask=False, return_token_type_ids=False, add_special_tokens=False ) item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs item['attention_mask'] = [1] * len(item['input_ids']) item.pop('token_type_ids') if 'token_type_ids' in item.keys() else None if 'position_ids' in item.keys(): item['position_ids'] = list(range(len(item['input_ids']))) batch_inputs.append(item) query_lengths.append(len([self.tokenizer.bos_token_id] + query_inputs['input_ids'] + sep_inputs)) prompt_lengths.append(len(sep_inputs + prompt_inputs)) collater_instance = Collater_for_lightweight(self.tokenizer, max_length) batch_inputs = collater_instance([ [{ 'input_ids': item['input_ids'], 'attention_mask': item['attention_mask'] } for item in batch_inputs], query_lengths, prompt_lengths ])[0] batch_inputs = {key: val.to(device) for key, val in batch_inputs.items()} self.model( **batch_inputs, output_hidden_states=True, compress_layer=compress_layers, compress_ratio=compress_ratio, query_lengths=query_lengths, prompt_lengths=prompt_lengths, cutoff_layers=cutoff_layers ) flag = True except RuntimeError as e: batch_size = batch_size * 3 // 4 except torch.OutofMemoryError as e: batch_size = batch_size * 3 // 4 all_scores = [] for batch_start in trange(0, len(all_queries_inputs_sorted), batch_size): queries_inputs = all_queries_inputs_sorted[batch_start:batch_start+batch_size] passages_inputs = all_passages_inputs_sorted[batch_start:batch_start+batch_size] batch_inputs = [] query_lengths = [] prompt_lengths = [] for query_inputs, passage_inputs in zip(queries_inputs, passages_inputs): item = self.tokenizer.prepare_for_model( [self.tokenizer.bos_token_id] + query_inputs['input_ids'], sep_inputs + passage_inputs['input_ids'], truncation='only_second', max_length=encode_max_length, padding=False, return_attention_mask=False, return_token_type_ids=False, add_special_tokens=False ) item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs item['attention_mask'] = [1] * len(item['input_ids']) item.pop('token_type_ids') if 'token_type_ids' in item.keys() else None if 'position_ids' in item.keys(): item['position_ids'] = list(range(len(item['input_ids']))) batch_inputs.append(item) query_lengths.append(len([self.tokenizer.bos_token_id] + query_inputs['input_ids'] + sep_inputs)) prompt_lengths.append(len(sep_inputs + prompt_inputs)) collater_instance = Collater_for_lightweight(self.tokenizer, max_length) batch_inputs = collater_instance([ [{ 'input_ids': item['input_ids'], 'attention_mask': item['attention_mask'] } for item in batch_inputs], query_lengths, prompt_lengths ])[0] batch_inputs = {key: val.to(device) for key, val in batch_inputs.items()} outputs = self.model( **batch_inputs, output_hidden_states=True, compress_layer=compress_layers, compress_ratio=compress_ratio, query_lengths=query_lengths, prompt_lengths=prompt_lengths, cutoff_layers=cutoff_layers ) scores = [] for i in range(len(outputs.logits)): logits = last_logit_pool_lightweight(outputs.logits[i], outputs.attention_masks[i]) scores.append(logits.cpu().float().tolist()) if len(all_scores) == 0: for i in range(len(scores)): all_scores.append([]) for i in range(len(scores)): all_scores[i].extend(scores[i]) for i in range(len(all_scores)): all_scores[i] = [all_scores[i][idx] for idx in np.argsort(length_sorted_idx)] if normalize: all_scores[i] = [sigmoid(score) for score in all_scores[i]] if len(all_scores) == 1 and isinstance(all_scores[0], list): all_scores = all_scores[0] return all_scores