MKQA ==== `MKQA `_ is an open-domain question answering evaluation set comprising 10k question-answer pairs aligned across 26 typologically diverse languages. The queries are sampled from the [Google Natural Questions Dataset](https://github.com/google-research-datasets/natural-questions). Each example in the dataset has the following structure: .. code:: bash { 'example_id': 563260143484355911, 'queries': { 'en': "who sings i hear you knocking but you can't come in", 'ru': "кто поет i hear you knocking but you can't come in", 'ja': '「 I hear you knocking」は誰が歌っていますか', 'zh_cn': "《i hear you knocking but you can't come in》是谁演唱的", ... }, 'query': "who sings i hear you knocking but you can't come in", 'answers': { 'en': [{ 'type': 'entity', 'entity': 'Q545186', 'text': 'Dave Edmunds', 'aliases': [], }], 'ru': [{ 'type': 'entity', 'entity': 'Q545186', 'text': 'Эдмундс, Дэйв', 'aliases': ['Эдмундс', 'Дэйв Эдмундс', 'Эдмундс Дэйв', 'Dave Edmunds'], }], 'ja': [{ 'type': 'entity', 'entity': 'Q545186', 'text': 'デイヴ・エドモンズ', 'aliases': ['デーブ・エドモンズ', 'デイブ・エドモンズ'], }], 'zh_cn': [{ 'type': 'entity', 'text': '戴维·埃德蒙兹 ', 'entity': 'Q545186', }], ... }, } You can evaluate model's performance on MKQA simply by running our provided shell script: .. code:: bash chmod +x /examples/evaluation/mkqa/eval_mkqa.sh ./examples/evaluation/mkqa/eval_mkqa.sh Or by running: .. code:: bash python -m FlagEmbedding.evaluation.mkqa \ --eval_name mkqa \ --dataset_dir ./mkqa/data \ --dataset_names en zh_cn \ --splits test \ --corpus_embd_save_dir ./mkqa/corpus_embd \ --output_dir ./mkqa/search_results \ --search_top_k 1000 \ --rerank_top_k 100 \ --cache_path /root/.cache/huggingface/hub \ --overwrite False \ --k_values 20 \ --eval_output_method markdown \ --eval_output_path ./mkqa/mkqa_eval_results.md \ --eval_metrics qa_recall_at_20 \ --embedder_name_or_path BAAI/bge-m3 \ --reranker_name_or_path BAAI/bge-reranker-v2-m3 \ --devices cuda:0 cuda:1 \ --cache_dir /root/.cache/huggingface/hub \ --reranker_max_length 1024 change the embedder, reranker, devices and cache directory to your preference. .. toctree:: :hidden: mkqa/data_loader mkqa/evaluator mkqa/runner