BGE-Reranker ============ Different from embedding model, reranker, or cross-encoder uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. For examples, use a bge embedding model to first retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. The first series of BGE-Reranker contains two models, large and base. +-------------------------------------------------------------------------------+-----------------------+------------+--------------+-----------------------------------------------------------------------+ | Model | Language | Parameters | Model Size | Description | +===============================================================================+=======================+============+==============+=======================================================================+ | `BAAI/bge-reranker-large `_ | English & Chinese | 560M | 2.24 GB | Larger reranker model, easy to deploy with better inference | +-------------------------------------------------------------------------------+-----------------------+------------+--------------+-----------------------------------------------------------------------+ | `BAAI/bge-reranker-base `_ | English & Chinese | 278M | 1.11 GB | Lightweight reranker model, easy to deploy with fast inference | +-------------------------------------------------------------------------------+-----------------------+------------+--------------+-----------------------------------------------------------------------+ bge-reranker-large and bge-reranker-base used `XLM-RoBERTa-Large `_ and `XLM-RoBERTa-Base `_ respectively as the base model. They were trained on high quality English and Chinese data, and acheived State-of-The-Art performance in the level of same size models at the time released. Usage ----- .. code:: python from FlagEmbedding import FlagReranker reranker = FlagReranker( 'BAAI/bge-reranker-base', query_max_length=256, use_fp16=True, devices=['cuda:1'], ) score = reranker.compute_score(['I am happy to help', 'Assisting you is my pleasure']) print(score)