BGE-Reranker-v2 =============== +------------------------------------------------------------------------------------------------------------------+-----------------------+-------------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------+ | Model | Language | Parameters | Model Size | Description | +==================================================================================================================+=======================+=============+==============+=========================================================================================================================================================+ | `BAAI/bge-reranker-v2-m3 `_ | Multilingual | 568M | 2.27 GB | Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. | +------------------------------------------------------------------------------------------------------------------+-----------------------+-------------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------+ | `BAAI/bge-reranker-v2-gemma `_ | Multilingual | 2.51B | 10 GB | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. | +------------------------------------------------------------------------------------------------------------------+-----------------------+-------------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------+ | `BAAI/bge-reranker-v2-minicpm-layerwise `_ | Multilingual | 2.72B | 10.9 GB | Suitable for multilingual contexts, allows freedom to select layers for output, facilitating accelerated inference. | +------------------------------------------------------------------------------------------------------------------+-----------------------+-------------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------+ | `BAAI/bge-reranker-v2.5-gemma2-lightweight `_ | Multilingual | 2.72B | 10.9 GB | Suitable for multilingual contexts, allows freedom to select layers, compress ratio and compress layers for output, facilitating accelerated inference. | +------------------------------------------------------------------------------------------------------------------+-----------------------+-------------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------+ .. tip:: You can select the model according your senario and resource: - For multilingual, utilize :code:`BAAI/bge-reranker-v2-m3`, :code:`BAAI/bge-reranker-v2-gemma` and :code:`BAAI/bge-reranker-v2.5-gemma2-lightweight`. - For Chinese or English, utilize :code:`BAAI/bge-reranker-v2-m3` and :code:`BAAI/bge-reranker-v2-minicpm-layerwise`. - For efficiency, utilize :code:`BAAI/bge-reranker-v2-m3` and the low layer of :code:`BAAI/bge-reranker-v2-minicpm-layerwise`. - For better performance, recommand :code:`BAAI/bge-reranker-v2-minicpm-layerwise` and :code:`BAAI/bge-reranker-v2-gemma`. Make sure always test on your real use case and choose the one with best speed-quality balance! Usage ----- **bge-reranker-v2-m3** Use :code:`bge-reranker-v2-m3` in the same way as bge-reranker-base and bge-reranker-large. .. code:: python from FlagEmbedding import FlagReranker # Setting use_fp16 to True speeds up computation with a slight performance degradation reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True) score = reranker.compute_score(['query', 'passage']) # or set "normalize=True" to apply a sigmoid function to the score for 0-1 range score = reranker.compute_score(['query', 'passage'], normalize=True) print(score) **bge-reranker-v2-gemma** Use the :code:`FlagLLMReranker` class for bge-reranker-v2-gemma. .. code:: python from FlagEmbedding import FlagLLMReranker # Setting use_fp16 to True speeds up computation with a slight performance degradation reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True) score = reranker.compute_score(['query', 'passage']) print(score) **bge-reranker-v2-minicpm-layerwise** Use the :code:`LayerWiseFlagLLMReranker` class for bge-reranker-v2-minicpm-layerwise. .. code:: python from FlagEmbedding import LayerWiseFlagLLMReranker # Setting use_fp16 to True speeds up computation with a slight performance degradation reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score. score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) print(score) **bge-reranker-v2.5-gemma2-lightweight** Use the :code:`LightWeightFlagLLMReranker` class for bge-reranker-v2.5-gemma2-lightweight. .. code:: python from FlagEmbedding import LightWeightFlagLLMReranker # Setting use_fp16 to True speeds up computation with a slight performance degradation reranker = LightWeightFlagLLMReranker('BAAI/bge-reranker-v2.5-gemma2-lightweight', use_fp16=True) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score. score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28], compress_ratio=2, compress_layer=[24, 40]) print(score)