BGE-Reranker-v2#
Model |
Language |
Parameters |
Model Size |
Description |
---|---|---|---|---|
Multilingual |
568M |
2.27 GB |
Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. |
|
Multilingual |
2.51B |
10 GB |
Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
|
Multilingual |
2.72B |
10.9 GB |
Suitable for multilingual contexts, allows freedom to select layers for output, facilitating accelerated inference. |
|
Multilingual |
2.72B |
10.9 GB |
Suitable for multilingual contexts, allows freedom to select layers, compress ratio and compress layers for output, facilitating accelerated inference. |
Tip
You can select the model according your senario and resource:
For multilingual, utilize
BAAI/bge-reranker-v2-m3
,BAAI/bge-reranker-v2-gemma
andBAAI/bge-reranker-v2.5-gemma2-lightweight
.For Chinese or English, utilize
BAAI/bge-reranker-v2-m3
andBAAI/bge-reranker-v2-minicpm-layerwise
.For efficiency, utilize
BAAI/bge-reranker-v2-m3
and the low layer ofBAAI/bge-reranker-v2-minicpm-layerwise
.For better performance, recommand
BAAI/bge-reranker-v2-minicpm-layerwise
andBAAI/bge-reranker-v2-gemma
.
Make sure always test on your real use case and choose the one with best speed-quality balance!
Usage#
bge-reranker-v2-m3
Use bge-reranker-v2-m3
in the same way as bge-reranker-base and bge-reranker-large.
from FlagEmbedding import FlagReranker
# Setting use_fp16 to True speeds up computation with a slight performance degradation
reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True)
score = reranker.compute_score(['query', 'passage'])
# or set "normalize=True" to apply a sigmoid function to the score for 0-1 range
score = reranker.compute_score(['query', 'passage'], normalize=True)
print(score)
bge-reranker-v2-gemma
Use the FlagLLMReranker
class for bge-reranker-v2-gemma.
from FlagEmbedding import FlagLLMReranker
# Setting use_fp16 to True speeds up computation with a slight performance degradation
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True)
score = reranker.compute_score(['query', 'passage'])
print(score)
bge-reranker-v2-minicpm-layerwise
Use the LayerWiseFlagLLMReranker
class for bge-reranker-v2-minicpm-layerwise.
from FlagEmbedding import LayerWiseFlagLLMReranker
# Setting use_fp16 to True speeds up computation with a slight performance degradation
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True)
# Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28])
print(score)
bge-reranker-v2.5-gemma2-lightweight
Use the LightWeightFlagLLMReranker
class for bge-reranker-v2.5-gemma2-lightweight.
from FlagEmbedding import LightWeightFlagLLMReranker
# Setting use_fp16 to True speeds up computation with a slight performance degradation
reranker = LightWeightFlagLLMReranker('BAAI/bge-reranker-v2.5-gemma2-lightweight', use_fp16=True)
# Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28], compress_ratio=2, compress_layer=[24, 40])
print(score)