Modeling#
EncoderOnlyEmbedderM3Model#
- class FlagEmbedding.finetune.embedder.encoder_only.m3.EncoderOnlyEmbedderM3Model(base_model: Dict[str, Any], tokenizer: AutoTokenizer | None = None, negatives_cross_device: bool = False, temperature: float = 1, sub_batch_size: int = -1, kd_loss_type: str = 'm3_kd_loss', sentence_pooling_method: str = 'cls', normalize_embeddings: bool = False, unified_finetuning: bool = True, use_self_distill: bool = False, self_distill_start_step: int = -1)[source]#
Embedder class for M3 model.
- Parameters:
base_model (AutoModel) – The base model to train on.
tokenizer (AutoTokenizer, optional) – The tokenizer to use. Defaults to
None
.negatives_cross_device (bool, optional) – If True, will compute cross devices negative loss. Defaults to
False
.temperature (float, optional) – Temperature to control the scale of scores. Defaults to
1.0
.sub_batch_size (int, optional) – Sub-batch size during encoding. If negative, will not split to sub-batch. Defaults to
-1
.kd_loss_type (str, optional) – Type of knowledge distillation loss. Defaults to
'm3_kd_loss'
.sentence_pooling_method (str, optional) – Pooling method to get sentence embedding. Defaults to
'cls'
.normalize_embeddings (bool, optional) – If True, normalize the embedding vector. Defaults to
False
.unified_finetuning (bool, optional) – If True, will finetune colbert vector and sparce embedding. Defaults to
True
.use_self_distill (bool, optional) – If True, will do self distillation. Defaults to
False
.self_distill_start_step (int, optional) – Step num to start self distillation. Defaults to
-1
.
Methods#
- EncoderOnlyEmbedderM3Model.encode(features)[source]#
Encode and get the embedding.
- Parameters:
features (Union[list, dict]) – Features feed to the model.
- Returns:
Dense embeddings. torch.Tensor: Sparce embeddings. torch.Tensor: Colbert vectors.
- Return type:
torch.Tensor
- EncoderOnlyEmbedderM3Model.compute_score(q_reps, p_reps, q_mask: Tensor, dense_weight: float = 1.0, sparse_weight: float = 0.3, colbert_weight: float = 1.0)[source]#
_summary_
- Parameters:
q_reps (_type_) – Query representations.
p_reps (_type_) – Passage representations.
q_mask (torch.Tensor) – _description_
dense_weight (float, optional) – _description_. Defaults to 1.0.
sparse_weight (float, optional) – _description_. Defaults to 0.3.
colbert_weight (float, optional) – _description_. Defaults to 1.0.
- Returns:
_description_
- Return type:
_type_
- EncoderOnlyEmbedderM3Model.compute_dense_score(q_reps, p_reps)[source]#
Compute the dense score.
- Parameters:
q_reps (torch.Tensor) – Query representations.
p_reps (torch.Tensor) – Passage representations.
- Returns:
The computed dense scores, adjusted by temperature.
- Return type:
torch.Tensor
- EncoderOnlyEmbedderM3Model.compute_sparse_score(q_reps, p_reps)[source]#
Compute the sparse score.
- Parameters:
q_reps (torch.Tensor) – Query representations.
p_reps (torch.Tensor) – Passage representations.
- Returns:
The computed sparse scores, adjusted by temperature.
- Return type:
torch.Tensor
- EncoderOnlyEmbedderM3Model.compute_colbert_score(q_reps, p_reps, q_mask: Tensor | None = None)[source]#
Compute the colbert score.
- Parameters:
q_reps (torch.Tensor) – Query representations.
p_reps (torch.Tensor) – Passage representations.
- Returns:
The computed colber scores, adjusted by temperature.
- Return type:
torch.Tensor
- EncoderOnlyEmbedderM3Model.ensemble_score(q_reps, p_reps, dense_scores=None, sparse_scores=None, colbert_scores=None)[source]#
Compute the ensemble score of the three methods.
- Parameters:
q_reps (torch.Tensor) – Query representations.
p_reps (torch.Tensor) – Passage representations.
dense_scores (torch.Tensor, optional) – The dense scores. Defaults to
None
.sparse_scores (torch.Tensor, optional) – The sparse scores. Defaults to
None
.colbert_scores (torch.Tensor, optional) – The colbert scores. Defaults to
None
.
- Raises:
ValueError – dense_scores, sparse_scores, colbert_scores must be provided
- Returns:
The ensemble score of the three methods.
- Return type:
_type_
- EncoderOnlyEmbedderM3Model.forward(queries: Dict[str, Tensor] | List[Dict[str, Tensor]] | None = None, passages: Dict[str, Tensor] | List[Dict[str, Tensor]] | None = None, teacher_scores: None | List[float] = None, no_in_batch_neg_flag: bool = False)[source]#
The computation performed at every call.
- Parameters:
queries (Union[Dict[str, Tensor], List[Dict[str, Tensor]]], optional) – Input queries. Defaults to
None
.passages (Union[Dict[str, Tensor], List[Dict[str, Tensor]]], optional) – Input passages. Defaults to
None
.teacher_scores (Union[None, List[float]], optional) – Teacher scores for distillation. Defaults to
None
.no_in_batch_neg_flag (bool, optional) – If True, use no in-batch negatives and no cross-device negatives. Defaults to
False
.
- Returns:
Output of the forward call of model.
- Return type:
- EncoderOnlyEmbedderM3Model.compute_loss(scores, target)[source]#
Compute the loss using cross entropy.
- Parameters:
scores (torch.Tensor) – Computed score.
target (torch.Tensor) – The target value.
- Returns:
The computed cross entropy loss.
- Return type:
torch.Tensor
- EncoderOnlyEmbedderM3Model.gradient_checkpointing_enable(**kwargs)[source]#
Activates gradient checkpointing for the current model.
- EncoderOnlyEmbedderM3Model.enable_input_require_grads(**kwargs)[source]#
Enables the gradients for the input embeddings.
- EncoderOnlyEmbedderM3Model.save(output_dir: str)[source]#
Save the model to the directory.
- Parameters:
output_dir (str) – Directory for saving the model.
- EncoderOnlyEmbedderM3Model._dense_embedding(last_hidden_state, attention_mask)[source]#
Use the pooling method to get the dense embedding.
- Parameters:
last_hidden_state (torch.Tensor) – The model output’s last hidden state.
attention_mask (torch.Tensor) – Mask out padding tokens during pooling.
- Raises:
NotImplementedError – Specified pooling method not implemented.
- Returns:
The dense embeddings.
- Return type:
torch.Tensor
- EncoderOnlyEmbedderM3Model._sparse_embedding(hidden_state, input_ids, return_embedding: bool = True)[source]#
Compute and return the sparse embedding.
- Parameters:
hidden_state (torch.Tensor) – The model output’s last hidden state.
input_ids (_type_) – Ids from input features.
return_embedding (bool, optional) – If True, return the computed embedding, otherwise just return the token weights. Defaults to
True
.
- Returns:
The sparse embedding or just the token weights.
- Return type:
torch.Tensor
- EncoderOnlyEmbedderM3Model._colbert_embedding(last_hidden_state, mask)[source]#
Get the colbert vectors.
- Parameters:
last_hidden_state (torch.Tensor) – The model output’s last hidden state.
attention_mask (torch.Tensor) – Mask out padding tokens during pooling.
- Returns:
The colbert vectors.
- Return type:
torch.Tensor
- EncoderOnlyEmbedderM3Model._encode(features)[source]#
Helper function to encode using input features.
- Parameters:
features (Union[list, dict]) – Features feed to the model.
- Returns:
Dense embedding. torch.Tensor: Sparce embedding. torch.Tensor: Colbert vector.
- Return type:
torch.Tensor
- EncoderOnlyEmbedderM3Model._compute_similarity(q_reps, p_reps)[source]#
Computes the similarity between query and passage representations using inner product.
- Parameters:
q_reps (torch.Tensor) – Query representations.
p_reps (torch.Tensor) – Passage representations.
- Returns:
The computed similarity matrix.
- Return type:
torch.Tensor
- EncoderOnlyEmbedderM3Model._get_queries_attention_mask(queries: Dict[str, Tensor] | List[Dict[str, Tensor]])[source]#
padding attention mask for colbert
- Parameters:
queries (Union[Dict[str, Tensor], List[Dict[str, Tensor]]]) – Input queries.
- Returns:
The query attention mask.
- Return type:
torch.Tensor
EncoderOnlyEmbedderM3ModelForInference#
- class FlagEmbedding.finetune.embedder.encoder_only.m3.EncoderOnlyEmbedderM3ModelForInference(base_model: Dict[str, Any], tokenizer: AutoTokenizer | None = None, negatives_cross_device: bool = False, temperature: float = 1, sub_batch_size: int = -1, kd_loss_type: str = 'm3_kd_loss', sentence_pooling_method: str = 'cls', normalize_embeddings: bool = False, unified_finetuning: bool = True, use_self_distill: bool = False, self_distill_start_step: int = -1)[source]#
Inference class of M3 model.
- forward(text_input: Dict[str, Tensor] | None = None, return_dense: bool = True, return_sparse: bool = False, return_colbert_vecs: bool = False, return_sparse_embedding: bool = False)[source]#
Encode the text input using the selected way.
- Parameters:
text_input (Dict[str, Tensor], optional) – Text inputs. Defaults to
None
.return_dense (bool, optional) – If True, return the dense embedding. Defaults to
True
.return_sparse (bool, optional) – If True, return the sparse embedding. Defaults to
False
.return_colbert_vecs (bool, optional) – If True, return the colbert vectors. Defaults to
False
.return_sparse_embedding (bool, optional) – Parameter for
_sparse_embedding()
. If True, will return sparse embedding. Otherwise, return the token weights. Defaults toFalse
.
- Returns:
A dictionary containing the three types of embeddings.
- Return type:
dict