data_loader#
- class FlagEmbedding.evaluation.mldr.MLDREvalDataLoader(eval_name: str, dataset_dir: str | None = None, cache_dir: str | None = None, token: str | None = None, force_redownload: bool = False)[source]#
Data loader class for MLDR.
Methods#
- MLDREvalDataLoader.available_dataset_names() List[str] [source]#
Get the available dataset names.
- Returns:
All the available dataset names.
- Return type:
List[str]
- MLDREvalDataLoader.available_splits(dataset_name: str | None = None) List[str] [source]#
Get the avaialble splits.
- Parameters:
dataset_name (Optional[str], optional) – Dataset name. Defaults to
None
.- Returns:
All the available splits for the dataset.
- Return type:
List[str]
- MLDREvalDataLoader._load_remote_corpus(dataset_name: str, save_dir: str | None = None) DatasetDict [source]#
Load the corpus dataset from HF.
- Parameters:
dataset_name (str) – Name of the dataset.
save_dir (Optional[str], optional) – Directory to save the dataset. Defaults to
None
.
- Returns:
Loaded datasets instance of corpus.
- Return type:
datasets.DatasetDict
- MLDREvalDataLoader._load_remote_qrels(dataset_name: str, split: str = 'test', save_dir: str | None = None) DatasetDict [source]#
Load the qrels from HF.
- Parameters:
dataset_name (str) – Name of the dataset.
split (str, optional) – Split of the dataset. Defaults to
'test'
.save_dir (Optional[str], optional) – Directory to save the dataset. Defaults to
None
.
- Returns:
Loaded datasets instance of qrel.
- Return type:
datasets.DatasetDict
- MLDREvalDataLoader._load_remote_queries(dataset_name: str, split: str = 'test', save_dir: str | None = None) DatasetDict [source]#
Load the queries from HF.
- Parameters:
dataset_name (str) – Name of the dataset.
split (str, optional) – Split of the dataset. Defaults to
'test'
.save_dir (Optional[str], optional) – Directory to save the dataset. Defaults to
None
.
- Returns:
Loaded datasets instance of queries.
- Return type:
datasets.DatasetDict