Modeling#
- class FlagEmbedding.finetune.reranker.decoder_only.layerwise.CrossDecoderModel(base_model: PreTrainedModel, tokenizer: AutoTokenizer = None, train_batch_size: int = 4, start_layer: int = 8)[source]#
- Model class for decoder only reranker. - Parameters:
- base_model (PreTrainedModel) – The underlying pre-trained model used for encoding and scoring input pairs. 
- tokenizer (AutoTokenizer, optional) – The tokenizer for encoding input text. Defaults to - None.
- train_batch_size (int, optional) – The batch size to use. Defaults to - 4.
- start_layer (int, optional) – Starting layer for layerwise. Defaults to - 8.
 
 
Methods#
- CrossDecoderModel.encode(features)[source]#
- Abstract method of encode. - Parameters:
- features (dict) – Teatures to pass to the model. 
 
- CrossDecoderModel.forward(pair: Dict[str, Tensor] | List[Dict[str, Tensor]] = None, teacher_scores: Tensor | None = None)[source]#
- The computation performed at every call. - Parameters:
- pair (Union[Dict[str, Tensor], List[Dict[str, Tensor]]], optional) – The query-document pair. Defaults to - None.
- teacher_scores (Optional[Tensor], optional) – Teacher scores of knowledge distillation. Defaults to None. 
 
- Returns:
- Output of reranker model. 
- Return type:
 
